Light Intensity is an inverse square: I = 1 / r^2 For GE/PD we would need to use a Multiplyer since this equasion dies at 5. I = Intensity (0-1) r = (d)istance between vert & source [See Appendix Below] MULT = Multiplyer S = Saturation So the Equasion is as follows: I = 1 / (d / MULT + 1)^2 I = I * (cos x) S = S * I Example: Z_____Q / \ O----------x------------Y \ | / \ | / \ | / \ / L L=0,0,100 x=0,0,0 y=100,0,0 O=-100,0,0 Z=10,0,-10 LX = 0 Degrees LY = 45 Degrees LO = -45 Degrees ------------------------------------------------ LX: MULT = 1000 I = 1 / (d / MULT + 1)^2 I = 1/ (SqRt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2 ) / MULT + 1) ^2 I = 1/ (SqRt( (0-0)^2 + (0-0)^2 + (100-0)^2 ) / 1000 + 1) ^2 I = 1/ (100 / 1000 + 1)^2 I = 1/ (1.1)^2 I = 1/1.21 I = 0.83 I = I * cos0 I = 0.83 * 1 I = 0.83 S = S * 0.83 -------------------------------------------- LY: MULT = 1000 I = 1 / (d / MULT + 1)^2 I = 1/ (SqRt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2 ) / MULT + 1) ^2 I = 1/ (SqRt( (0-100)^2 + (0-0)^2 + (100-0)^2 ) / 1000 + 1) ^2 I = 1/ (1.14)^2 I = 1/1.30 I = 0.77 I = I * cos45 I = 0.77 * 0.71 I = 0.54 S = S * 0.54 -------------------------------------------- LO: MULT = 1000 I = 1 / (d / MULT + 1)^2 I = 1/ (SqRt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2 ) / MULT + 1) ^2 I = 1/ (SqRt( (0--100)^2 + (0-0)^2 + (100-0)^2 ) / 1000 + 1) ^2 I = 1/ (1.14)^2 I = 1/1.30 I = 0.77 I = I * cos-45 I = 0.77 * 0.71 I = 0.54 S = S * 0.54 -------------------------------------------- Z & Q are behind xyo and so get no light. Set to ambiant. =============================================== Appendix of individual Equasions - Distance between two points 3D d = SqRt( (x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2 ) - Intensity with Distance I = 1 / r^2 - Intensity with angle I = I * cos a